* *
Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.
23/09/2018, 09:45:35


Облако тегов

Для отображения популярных тем необходимо установить Flash Player 9 или более поздней версии.

Автор Тема: АКТИНОМИЦЕТЫ(лучистые грибки)  (Прочитано 4307 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #15 : 29/10/2014, 03:34:25 »
Варианты с длительной выработкой заквасок для приготовления хлеба тоже видимо связаны с актиномицетами

Цитировать
Ученые наблюдали образование таких вариантов под влиянием изменившейся среды или под воздействием внешних факторов: лучистой энергии, рентгеновских и ультрафиолетовых лучей, химических агентов и др. В результате таких воздействий получаются наследственно закрепленные варианты.

Изменения затрагивают как внешние морфологические и культуральные признаки, так и биохимические.

В процессе длительного выращивания лучистых грибков на той или иной питательной среде микроорганизмы постепенно начинают потреблять соединения, которых они до этого не усваивали. Адаптация к питательному субстрату особенно ярко выражена у актиномицетов.

Такую физиологическую перестройку можно вызвать у организмов в отношении многих источников углеродного, азотного питания, а также дополнительных веществ — витаминов, аминокислот и др. Последовательно приучая микроорганизмы к тому или иному субстрату или индивидуальному веществу, можно получить так называемые зависимые мутанты. Эти мутанты уже не растут без веществ, к которым приспособились. Мутационные изменения могут быть морфологического, физиологического и биохимического характера.

http://plant.geoman.ru/books/item/f00/s00/z0000000/st009.shtml

Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #16 : 22/12/2014, 20:25:49 »
Продолжаем ходить по кругу ???
Т.е. это было выращивание актиномицетов на размолотой проросшей пшенице, со всеми вытекающими полезностями:
- синтезируют органические вещества при помощи лучистой световой энергии
- развивается при свободном притоке кислорода
- могут развиваться и при низкой влажности субстрата
- хорошо переносят высушивание
- имеются термофильные организмы с температурным оптимумом роста 45—60 °С


Термофильные как раз и интересны

Цитировать
Экологически обособленную группу в природе представляют термофильные микроорганизмы. Температурные условия вызывали в в процессе эволюции появление микробных форм, которые оказались способными развиваться при разных температурах, в том числе и при высокой (50-93°С).

Одна из главных отличительных особенностей термофилов — ускоренный обмен веществ. За последние годы благодаря новейшим методам исследования удалось накопить данные, частично раскрывающие механизмы, при помощи которых клетка защищается от воздействия высокой температуры.

Процессы метаболизма в клетках термофилов протекают с гораздо большей скоростью, чем в клетках мезофилов. Поэтому концентрация растворенного в среде кислорода может явиться фактором, лимитирующим рост термофильных микроорганизмов. Однако при культивировании термофильных микроорганизмов на богатых естественных средах в условиях интенсивной аэрации организмы могут и не испытывать недостатка в растворенном кислороде.

Одним из важнейших факторов, определяющих рост и развитие термофильных микроорганизмов, является скорость поступления кислорода и его концентрация в культуральной среде. Степень ограничения роста аэробных организмов при недостатке кислорода зависит от температуры выращивания. Растворимость кислорода в воде увеличивается с понижением температуры, поэтому рост микроорганизмов при более низких температурах не ограничивается содержанием кислорода в такой степени, как в случае инкубации при высоких температурах. Этим и объясняется тот факт, что общий урожай организмов, выращенных при низких температурах, часто оказывается выше, чем урожай микроорганизмов, выращенных при более высоких температурах, хотя скорость роста в последнем случае может быть больше.

Очень интересны опыты Р. Дж. Доунея. Этот исследователь показал, что при повышенной температуре необходимо насыщение среды кислородом под давлением, равным 1 атм. В этих условиях растворимость кислорода увеличивается. Так, при 60°С концентрация кислорода была равна 139 микромолям, это значение близко к концентрации кислорода в среде для развития мезофильных форм при обычных температурах (143-240 микромолей). Выращивая Bac. stearothermophilus на полноценной питательной среде с повышенным содержанием кислорода при 60°С, Доунею удалось получить большую биомассу этих бактерий. Таким образом, выяснилось, что биомасса клеток является функцией концентрации кислорода в среде и максимальное ее количество достигается при растворении кислорода в среде под давлением, равным 1 атм. Дальнейшее увеличение концентрации кислорода замедляет рост бактерий.

Большинство известных термофильных лучистых грибков быстро гидролизуют крахмал, свертывают и пептонизируют молоко, разжижают желатин и т. д., что свидетельствует о высокой ферментативной активности и может быть использовано в практике.

Для получения хорошего роста и споруляции этих микроорганизмов обычно используют крахмал и неочищенную мальтозу.

Получается, что при температуре пастеризации, увеличивая кислородную насыщенность можно резко увеличить рост термофильных бактерий.
 Бульбируем с подогревом и возможно под давлением.

Только такую ТЖ видимо из опыта используют в качестве добавки, а не основного продукта.
Цитировать
Термофильные бактерии используют для получения микробной биомассы, очистки сточных вод. Ценными являются продукты обмена веществ термофилов, выделяющиеся в окружающую среду. Эти микроорганизмы продуцируют такие физиологически активные вещества, как антибиотики, витамины, ферменты.

Обычно для получения микробной биомассы используют термотолерантные дрожжи. Их выращивают на средах, содержащих углеводы (сусловые среды), некоторые спирты или углеводороды нормального строения (н-алкаыы). В последнее время для этих целей применяют и термофильные бактерии.

Выросшая микробная биомасса вполне полноценна в пищевом отношении: содержит 40- 60% белка, незаменимые аминокислоты, разнообразные витамины. Высушенная биомасса (в виде муки) — белково-витаминный концентрат (БВК) — в небольшом количестве добавляется к пищевому рациону животных.

http://molbiol.ru/wiki/%28%D0%B6%D1%80%29_%D0%A2%D0%95%D0%A0%D0%9C%D0%9E%D0%A4%D0%98%D0%9B%D0%AC%D0%9D%D0%AB%D0%95_%D0%91%D0%90%D0%9A%D0%A2%D0%95%D0%A0%D0%98%D0%98#.D0.A1.D0.BF.D0.BE.D1.80.D0.BE.D0.BE.D0.B1.D1.80.D0.B0.D0.B7.D1.83.D1.8E.D1.89.D0.B8.D0.B5_.D0.B0.D1.8D.D1.80.D0.BE.D0.B1.D0.BD.D1.8B.D0.B5_.D1.82.D0.B5.D1.80.D0.BC.D0.BE.D1.84.D0.B8.D0.BB.D1.8C.D0.BD.D1.8B.D0.B5_.D0.B1.D0.B0.D0.BA.D1.82.D0.B5.D1.80.D0.B8.D0.B8

Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #17 : 17/05/2015, 21:43:19 »
Кретович (1945), суммируя результат опытной работы по изучению причин самонагревания зерна, приходит к выводу, что при наличии материала с кондиционной влажностью процесс начинается, очевидно, с активации ферментативной деятельности. Только после того как усиленное дыхание создаст в межзерновом пространстве повышенную относительную влажность, ведущая роль переходит к микроорганизмам.

В производственной обстановке самонагревание зерна происходит, конечно, под влиянием одновременного воздействия значительного разнообразия микроорганизмов. При постепенном повышении температуры микробные группировки, населяющие зерно, весьма закономерно меняются. В дальнейшем изложении мы кратко рассмотрим последовательность данной смены.

На поверхности здорового зерна всегда содержится довольно богатая микрофлора, но его внутренние ткани остаются стерильными. Эта микрофлора размножается на зерне в период регетации растения, питаясь выделениями его клеток. Она получила название «эпифитной микрофлоры». Среди эпифитных бактерий встречается много пигментных форм, относимых к виду Bact. herbicola aureum. Термофильные микроорганизмы здесь представлены бедно.

Эпифитная микрофлора зерновой массы должна быть причислена в основном к мезофилам. При самонагревании она играет роль лишь в первых фазах процесса. При дальнейшем повышении температуры создается обстановка, элективная для термотолерантных и термофильных микробов, немногочисленные зародыши которых всегда имеются в зерне. Они быстро размножаются при повышении температуры зерна и становятся доминирующей его микрофлорой.

Прежде чем несколько подробнее охарактеризовать микрофлору отдельных фаз процесса самонагревания, мы дадим общую схематическую обрисовку их, предложенную Марченко (1928). Как и каждая схема, эта классификация является, конечно, весьма условной.

Марченко различает ряд стадий самонагревания.

Первая — характеризуется повышением температуры до 24—30°. Отпотевания не замечается, сыпучесть зерна изменяется весьма мало и посторонних запахов не имеется. Заметных изменений в цвете нет, наблюдается лишь потемнение недозрелых зерен во влажном овсе и зародышей у зерен кукурузы (налет плесени).

При второй фазе наблюдается дальнейшее повышение температуры до 34—38°. Появляется отпотевание зерна, понижение сыпучести (большее у овса и ячменя и меньшее у тяжелого зерна); отмечается солодовый запах и запах печеного хлеба, Влажные зерна ржи и пшеницы несколько темнеют, у овса и ячменя происходит потемнение пленок (белый и светложелтый цвета переходят в желтый). Недозрелые зерна становятся мягкими.

При третьей фазе температура достигает 50° и более. От зерна исходит сильный запах (затхлый, гнилостный), сыпучесть всех культур значительно понижается, а низконатурный овес теряет ее совсем. Интенсивное потемнение оболочек у зерна пшеницы и ржи; во влажном зерне они имеют пригорелый вид. Пленки ячменя и овса краснеют, недозрелые зерна овса покрываются черной плесенью, иногда зеленой.

В зависимости от обстоятельств продолжительность отдельных стадий может быть весьма различной. В некоторых случаях кривая нарастания температуры имеет крутой, в других случаях пологий характер.

В первую фазу самонагревания число микроорганизмов в зерне сильно увеличивается, в силу размножения преимущественно неспороносных и не образующих пигмента палочек. Желтоокрашенные бактерии типа В act. herbicola очень быстро вымирают, не выдерживая конкуренции в новой обстановке.

Во вторую фазу самонагревания число микроорганизмов продолжает обычно нарастать. Температура в 40° достаточно благоприятна для развития теплолюбивых спороносных бактерий, грибов и актиномицетов, число которых в данную фазу может значительно увеличиться.

Ячевский (1940) в греющемся зерне обнаруживал виды мукоровых грибов, Penicillium, Aspergillus, Dematium, Cladosporium и представителей других родов.

В третью фазу основная роль переходит к спороносным, преимущественно к термофильным и термотолерантным микроорганизмам. Они становятся доминантными формами, что весьма красочно было показано опытами Мирзоевой (1939). Основную роль при более сильном разогревании играют бактерии и отчасти актиномицеты, так как число плесеней, среди которых отсутствуют формы, переносящие высокие температуры, в эту фазу самонагревания сильно уменьшается.

При далеко зашедшем самонагревании происходит снижение числа микроорганизмов. Это объясняется в значительной степени подсушиванием сильно разогревшегося зерна, влага из которого мигрирует в другие слои хранящегося зерна.

Динамика микрофлоры в греющемся зерне была прослежена многими исследователями. Мы приводим лишь данные одного из опытов, проведенных Мишустиным и Подъяпольской в 1935 г. в производственных условиях во Всесоюзном научно — исследовательском институте зерна.

Здесь весьма красочно вырисовывается быстрая гибель пигментных форм бактерий в начале самонагревания зерна и постепенная смена мезофильных микроорганизмов термофилами. Плесени, как это хорошо видно, в более поздние стадии самонагревания сходят на-нет. Актиномицеты, представленные в греющемся зерне, значительно беднее, чем бактерии. Дрожжи» как и следовало ожидать, при повышенной температуре не размножаются. К конечному сроку наблюдения число микроорганизмов резко снижается вследствие подсушивания и самостерилизации зерна.

Из приведенных материалов становится совершенно очевидным, что в период наибольшего подъема температуры основную роль в процессе самонагревания играют термофильные бактерии. Как уже отмечалось ранее, продолжительность их жизни незначительна, поэтому абсолютное число термофильных бактерий в греющемся продукте может быть сравнительно невелико.

Кратко отметим биохимические и химические изменения, вызываемые в зерне процессом самонагревания. Мы не стремимся здесь дать исчерпывающую сводку и ограничиваемся выборочными данными.

Прежде всего следует осветить сущность изменения ферментного комплекса зерна. Установлено, что некоторые ферменты, связанные с дыхательным процессом (как каталаза) и менее стойкие к действию высоких температур, заметно инактивируются при температурах, превышающих 40°. Гидролазы, в том числе амилаза, лучше выносят нагрев и разрушаются в зоне более высоких температур. Умеренный нагрев зерна заметно активирует деятельность амилазы, почему в греющемся зерне первоначально обычно обнаруживается повышенное количество естественных сахаров.

Интересно то, что даже в обуглившемся зерне амилаза полностью на разрушается. В разогревшемся зерне отмечается значительная потеря сухого вещества. В основном она падает на углеводы. Содержание белкового азота снижается за счет увеличения аминной и аммиачной его форм. Суммарное количество азота при этом практически остается неизменным. Титруемая кислотность и содержание редуцирующих сахаров возрастают, что указывает на наличие в зерне глубоких автолитических процессов.

В результате необратимой денатурации белки зерна теряют способность к набуханию и образованию упругого студня клейковины. Это, а также прочие изменения резко снижают хлебопекарные качества муки, полученной из гревшегося зерна.

Следует отметить, что в самонагревающемся зерне тепло распределяется весьма неравномерно. Поэтому в одной и той же партии гревшегося зерна можно найти зерна с различной степенью порчи.

Особенно сильно гревшееся зерно приобретает почти черную окраску. По нашим исследованиям, это зависит от образования в зерне веществ, весьма близких к гуминовой кислоте. Эти вещества хорошо растворяются в щелочах.

Химизм образования темноокрашенных веществ в греющемся зерне был детально изучен Кретовичем и Токаревой (1948). Эти соединения, называемые «меланоидинами», получаются при соединении сахаров с аминокислотами, ди — или трипептидами.

Источник: http://www.activestudy.info/rol-termofilnyx-mikroorganizmov-v-samonagrevanii-zerna-i-muki/ © Зооинженерный факультет МСХА


Оффлайн Dobroljub

  • Постоялец
  • ***
  • Сообщений: 202
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #18 : 15/12/2015, 13:45:44 »
я так понял, что Рамунас не особо париться с чистотой (мытьем) продуктов, и руки не моет (так он писал кажется)...

Цитировать
откровенно говоря....... я яблок не мою, даже рук не мою при нарезании (пофиг что до этого копался в компосте ).......

если у Рамунаса действительно в еде термофилы, то похоже вот откуда закваска:

Цитировать
Термофильные бактерии широко распространены в природе. Их можно выделить из почвы, торфа, ила, воды, компоста, навоза и т. д. Но не всегда эти организмы развиваются в термофильных зонах. Однако наиболее интенсивное развитие термофилов наблюдается в местах, подвергающихся воздействию высоких температур. Особенно это касается бактерий, которые не способны развиваться при температуре ниже 40 °С. Эти бактерии называются обли-гатно-термофильными, имеют температурный оптимум роста 55—65 °С и выше.

В значительных количествах термофильные бактерии обнаруживаются в огородных и полевых почвах, куда они попадают в основном вместе с органическими удобрениями.
Было показано, что в окультуренных почвах термофилов довольно много, а в необработанных почвах их почти нет. Эти наблюдения дали возможность использовать термофильные микроорганизмы в качестве показателей степени окультуренности почв. Однако термофильные микроорганизмы были обнаружены даже в почвах и водах Крайнего Севера.

По сравнению с почвой такие субстраты, как сточные воды, компост, навоз, самонагревающиеся торф и сено, содержат большее количество термофильных бактерий. Самонагревание сена и торфа, которое иногда приводит к пожару, в значительной мере обусловливается развитием термофилов. Наличие термофильных микроорганизмов в кишечном тракте и экскрементах животных и человека отмечено многими исследователями.
http://plant.geoman.ru/books/item/f00/s00/z0000000/st015.shtml

НО стрёмно как-то немытые и нечищеные овощи термофилить, мало ли кто там вырастет  ???

Цитировать
Ботули́зм (от лат. botulus — колбаса[1]) — тяжёлое токсикоинфекционное заболевание... Развивается в результате попадания в организм пищевых продуктов[2], воды или аэрозолей, содержащих ботулотоксин, продуцируемый спорообразующей палочкой Clostridium botulinum...

Возбудители ботулизма широко распространены в природе и обитают в почве. Бактерия размножается и вырабатывает токсин в процессе жизнедеятельности. Токсины вырабатываются вегетативными формами. Оптимальные условия роста вегетативных форм — крайне низкое остаточное давление кислорода (0,40—1,33 кПа) и температурный режим в пределах 28—35 °C[13]. В процессе жизнедеятельности происходит характерное для большинства клостридий газообразование (визуально на консервированных продуктах определяется как 'бомбаж'-вздутие крышки или жестяной банки). Прогревание при температуре 80 °C в течение 30 мин вызывает гибель вегетативных форм, однако его споровые формы способны выживать в течение нескольких часов при температуре 100 °C[17], и, попадая в благоприятную среду, переходить в вегетативные формы. Для полного уничтожения применяют дробную пастеризацию-тиндализацию[18]. Ботулотоксин относится к полипептидам и при кипячении в течение свыше 30 мин инактивируется.
https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D1%82%D1%83%D0%BB%D0%B8%D0%B7%D0%BC

Т.е. если даже при 65 С Clostridium botulinum неактивна, то после остывания продукта до комнатной температуры и длительного хранения она может размножиться и навыделять бутулотоксинов.


А в процессе самой тепловой обработки при 65 С есть еще эти:
Цитировать
К термофильным лучистым грибкам относятся актиномицеты различных систематических групп, обладающие способностью развиваться при высоких температурах (50—60 °С), независимо от температурного минимума их роста. Среди них встречаются актиномицеты, способные расти при 60—70 °С.
...Термофильные актиномицеты были обнаружены во всех почвах и во все сезоны года. Особенно много их в почвах, удобренных навозом. Зимой термофильные актиномицеты составляли 10—15% от всей термофильной микрофлоры; весной и летом 70—90%. Количество термофильных лучистых грибков не зависит от географической закономерности, а определяется экологическими факторами, в частности типом почвы и степенью ее окультуреннооти.
http://plant.geoman.ru/books/item/f00/s00/z0000000/st015.shtml
« Последнее редактирование: 15/12/2015, 14:25:56 by Dobroljub »

Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #19 : 04/02/2016, 21:21:02 »
Анаэробные термофильные бактерии

Значительную часть спороносных термофильных бактерий составляют анаэробные виды. Известны облигатно-термофильные масляно-кислые, целлюлозные, десульфурирующие и метанобразующие бактерии.

Термофильные целлюлозные бактерии. Этих бактерий обнаруживают обычно в компостах, разлагающихся растительных отбросах, илах и т. д. В таких субстратах эти бактерии наряду с термофильными целлюлозоразлагающими грибами и актиномицетами находят благоприятные условия для своего развития. Когда температура поднимается до 60—65 °С, физиологическая активность грибов и актиномицетов резко снижается и разрушение клетчатки полностью осуществляется бактериями.

Развитие целлюлозных бактерий можно заметить сначала по газообразованию, затем по разрушению клетчатки (фильтровальной бумаги) и появлению желто-оранжевого пигмента.

Чистые культуры этих бактерий получить довольно трудно, и это удавалось немногим исследователям. Типичным мезофильным представителем является бактерия Bacillus omelianskii, названная в честь В. Л. Омелянского, впервые описавшего этот микроорганизм. В качестве типичного термофильного представителя можно назвать Clostridium thermocellulaseum. Описания мезофильных и термофильных видов указанных бактерий тождественны, поэтому А. А. Имшенецкий считает, что они представляют один вид. При этом термофилы могут рассматриваться как варианты мезофилов.

Морфологически целлюлозные бактерии представляют собой тонкие, прямые или слегка изогнутые палочки, часто с округлыми спорами на концах клеток. Палочки подвижны, жгутики расположены по всей поверхности клетки.

Продуктами обмена веществ анаэробных целлюлозных бактерий, выделяющимися в окружающую среду, являются водород, углекислый газ, этиловый спирт, глицерин, муравьиная, уксусная, молочная, янтарная, яблочная и фумаровая кислоты. Присутствуют также следы ацетальдегида, иногда — масляная кислота. Эти бактерии разлагают целлюлозу до низкомолекулярных углеводов, главным образом до целлобиозы и глюкозы. Гидролиз целлюлозы сопровождается появлением в среде фермента целлюлазы.

Термофильные метановые бактерии могут сопутствовать анаэробным целлюлозным бактериям или культивироваться совместно с ними. В начале этого века Ц. К о-олхаасом впервые были описаны термофильные метановые бактерии с температурными границами развития 45—69 °С. Наиболее типичными видами являются Methanobacterium soehngenii и Methanobacillus omelianskii. Эти бактерии представляют собой тонкие, прямые или слегка изогнутые неспороносные палочки.

Термофильные десульфурирующие бактерии нередко сопутствуют термофильным целлюлозным бактериям. При высоких температурах восстановление сульфатов осуществляется бактерией Desulfotomaculum nigrificans, которая представляет собой палочки с округлыми концами, иногда чечевицевидные и вздутые, подвижные, пери-трихи. Споры овальные, субтерминальные или терминальные.

Для получения целлюлолитических ферментов пытались использовать термофильные анаэробные бактерии и актиномицеты. С помощью целлюлолитических ферментов можно повысить питательную ценность грубых кормов для животных, осахаривать сульфатную целлюлозу до глюкозы, получая таким образом из непищевого сырья ценный питательный продукт. Эти ферменты способны расщеплять полисахариды одревесневших, растительных материалов (шелуха злаковых культур, подсолнечная лузга) до Сахаров (глюкозы и ксилозы). Следовательно, открывается возможность замены кислотного гидролиза древесины и различных отходов ферментативным гидролизом. При этом полностью ликвидируются расход минеральных кислот и необходимость применения высоких температур и давлений при превращении целлюлозы в сахара.

http://plant.geoman.ru/books/item/f00/s00/z0000000/st015.shtml
« Последнее редактирование: 28/02/2016, 19:26:44 by rid »

Оффлайн SergeySergey

  • Постоялец
  • ***
  • Сообщений: 134
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #20 : 11/07/2016, 02:18:52 »
Итак, вернемся к кишечнику, то есть к населяющим его микроорганизмам. По современным представлениям они являются основными переработчиками потребляемой человеком пищи в молекулярную форму. Только в таком виде она может быть доставлена посредством всасывания на кишечной стенке в кровь и далее в клетки тела. Кроме того, микробы синтезируют в своих клетках множество необходимых человеку веществ – витаминов, ферментов, незаменимых аминокислот и других. От стабильности этого процесса и зависит здоровье, следовательно - тонус и качество жизни человека. Как отмечалось, для
контроля и управления микробиотой кишечника необходим количественный метод анализа ее состава, и он получен в виде опосредованного определения ее состава по данным масс-спектрометрии жирных кислот. При использовании этого метода накоплена информация по пристеночной микрофлоре тощей, подвздошной и ободочной кишок путем ГХ-МС анализа микробных маркеров в биоптатах, получаемых в отделениии патологии тонкого кишечника ЦНИИГ, возглавляемом профессором Пафеновым А.И., при исследованиях здоровых добровольцев и больных с синдромом раздраженного кишечника и антибиотико-ассоциированной диареей. Эти исследования впервые позволили установить характер распределения микроорганизмов по отделам кишечника. Их сопоставление с анализом фекалий у тех же пациентов показали, что адекватно динамике заболевания и лечения пробиотиками меняется только пристеночная микробиота. Микрофлора фекалий каких-либо корреляций с процессом не обнаруживает.
Нам удалось измерить концентрацию микробных компонентов непосредственно в месте обитания, где присутствуют сами клетки микробов кишечной стенки. Поэтому мы вправе делать прямые доступные нам сопоставления между концентрацией маркеров и числом микробных клеток в условиях отсутствия пищевой липидной компоненты, поскольку биоптаты получали натощак. Такая логика убеждает нас в том, что мы измерили ведущую микрофлору кишечной стенки. Ведущую в количественном отношении, так как оказалось, что при наличии биоптата весом 4мг мы можем детектировать микроорганизмы начиная с концентрации 10 4
- 10 5 кл/г, поэтому, значительная часть микрофлоры осталась вне поля наших возможностей. Как оказалось, общая численность микроорганизмов кишечной стенки в норме имеет величину в пределах (0,5-1,3)х10 11 кл/г в зависимости от отдела кишечника.
Плотность заселения стенки кишечника в дистальном направлении меняется мало: в подвздошной кишке она в два раза меньше, а в толстой в полтора раза больше, чем в тощей. Измеренная нами пристеночная микрофлора оказалась существенно более концентрированной, чем просветная (по литературным данным [Schaechter, 1993]), которая в тонкой кишке на шесть а в подвздошной кишке на пять порядков ниже по численности (до 10 5 – 10 6 кл/мл соответственно), и только в ободочной кишке соответствует таковой в ее содержимом. Видовой состав микроорганизмов соответствует известным представлениям о компонентах кишечной микрофлоры, в особенности – микроорганизмов фекалий [24]. Однако сходство ограничивается категориями общего характера: качественного состава и приоритетного (рангового) содержания основных элементов кишечного микробиоценоза. Действительно, в толстом кишечнике и фекалиях существенно больше анаэробов.
Полученная нами общая численность микроорганизмов для фекалий находится в пределах интервала значений 0,6-5´ 10 11 кл/г, что согласуется с известными литературными данными измерений генетическим и культурально-биохимическим методами. Совпадает с известными оценками и относительное количество анаэробов в них, которое по нашим данным составляет 88%. Родовое распределение трудно сравнивать с литературными данными, так как в них приводится очень широкий диапазон значений, - в пределах 3-6 порядков. Тем не менее, совпадает наша оценка о приоритете рода Eubacterium, численность которых имеет порядок 10 11 кл/г (10 9 – 10 12 по литературным данным), о количестве бактероидов 10 10 кл/г (10 10 - 10 12 по известным данным), клостридий - 6 х 10 10 кл/г (10 5 - 10 11 соответственно), бифидобактерий 10 10 кл/г (10 10 - 10 12 ), а также по энтерококкам, энтеробактериям, лактобациллам и стафилококкам.
Результаты разных исследований микробиоты фекалий отводят бифидобактериям в их составе почти от 100% до 0,1% (табл. 1). Диапазон в три порядка вряд ли вызван тем, что люди разные, - в каждом исследовании приводится серьезная статистика и добросовестная аналитическая процедура. Разницу следует, скорее, отнести к особенностям сопоставляемых методов количественных измерений. Не вдаваясь в детали, можно заключить, что эффект доминирования бифидобактерий создает рутинная практика анализа только бифидобактерий и условно-патогенной микрофлоры при исследованиях дисбактериозов. Как видно из поля зрения микробиолога при этом выпадают эубактерии, бактероиды и клостридии, которых в фекалиях по современным оценкам по крайней мере в несколько раз больше, чем бифидобактерий. Это заблуждение выглядит естественным, если вспомнить, что в рамках общей микробиологии принято считать, что в микробном сообществе в среднем культивируемыми являются не более 20% микроорганизмов любого местообитания. Что касается фекалий, то по оценкам молекулярно-генетическими методами так же оказывается, что определение 60-80% их микробиоценоза не доступно для культуральных методов. Данные масс-спектрометрии коррелируют с генетическими
(в рамках сопоставимости микробиологических количественных измерений) и одинаково показывают, что эубактерий, бактероидов и клостридий вместе и по отдельности на порядок больше, чем бифидобактерий.
Применение масс-спектрометрического метода дало возможность измерить численность более 50 таксонов микроорганизмов кишечника не только в фекалиях, но и в отделах самого кишечника, путем анализа их маркеров (жирных кислот) непосредственно в биоптатах, полученных при
интестиноскопии и колоноскопии с ретроградной илеоскопией. Эти данные показывают, что там также доминируют эубактерии, а их видовой состав существенно меняется по длине кишечника. Следует отметить филогенетическое родство эубактерий и клостридий. В определителе Берджи 9-го издания прямо сказано, что род
Eubacterium создан для удобства, чтобы поместить в него слабо спорообразующие клостридии.
Таким образом, кишечная микробиота представляет собой доминирующий континуум штаммов и видов родов
Clostridium и Eubacterium при равновеликом суммарном количестве бактероидов, бифидобактерий и лактобацилл.¡!!!!!!!!!!!!!!!!,
Приведенные данные свидетельствуют о важности рода Eubacterium в формировании и функционировании кишечной микробиоты. Теперь уже трудно, после проведенного анализа филогенетических связей, оторвать его от рода Clostridium (по крайней мере группы C.coccoides) и рассматривать их как пищеварительно важную группу пептолитических и целлюлолитических организмов. Следует отметить принципиально важную особенность представителей рода
Eubacterium, заключающуюся в способности образовывать водород. Это ключевое свойство консорциумов микроорганизмов, осуществляющих дайджест органического субстрата при анаэробных процессах в природе (болота), в рубце жвачных и в биотехнологии при анаэробном сбраживании разного рода отходов и получении биогаза. Мукозный слой кишечника человека по существу является аналогичным биореактором. Там идет образование метана, следовательно, работают архебактерии-метаногены, эффективность которых строго зависима от концентрации водорода в системе. В метаногенном сообществе водородные бактерии играют ключевую регуляторную роль еще и благодаря обратной связи процесса продукции и потребления водорода на первичный процесс расщепления углеводов с образованием ацетата. При СРК, как следует из наших измерений, наибольшие изменения претерпевает численность эубактерий, что должно приводить к увеличению концентрации водорода в системе. Действительно, ранее экспериментально показано четырехкратное увеличение концентрации водорода в выдыхаемом воздухе у больных с СРК (King, 1998) и его возвращение в норму при снятии симптомов в результате ограничительной диеты.
Основную долю (от 70% в тощей кишке до 90 в фекалиях) микроорганизмов во всех отделах кишечника составляют анаэробы. Второе место по численности в тощей кишке занимают аэробные актиномицеты – 17% (в фекалиях их всего 0,7 %). Аэробные кокки (стафилококки, стрептококки, энтерококки) и коринеформные бактерии) – составляют 5% колонизации тонкого кишечника по сравнению с 0,7 % в фекалиях. Доля энтеробактерий и энтерококков по отделам кишечника и в фекалиях близка к 2%.
Неожиданным результатом, несомненно, является обнаружение значительного количества аэробных актиномицетов. Специфичность их маркеров - разветвленных жирных кислот с метильной группой в положении Δ10 не позволяет предполагать какие-либо иные таксономические группы микроорганизмов, кроме представителей порядка Actinomycetales, содержащих в составе клеточной стенки миколовые кислоты, являющиеся источником 10Ме-разветвленных ЖК. Они содержаться в микобактериях, нокардиях, родокках, видах
Actinomadura и других актиномицетах, но не найдены у высших организмов (грибов, растений, животных). Присутствие этих молекул в биоптатах кишечника, крови и других органах и жидкостях человека подтверждается масс-спектрами, а также их анализом в составе музейных культур соответствующих микроорганизмов. Бактерии родов Streptomyces и Nocardiopsis
подтверждены также уникальным маркером изо-гексадекановой кислотой (i16). Кроме того, Nocardiopsis dassonvilley выделен нами в чистой культуре из кишечника.
К ним следует добавить микроорганизмы: Propionibacterium,
Actinomyces, Brevibacterium, которые также выделены в чистой культуре и коринеформные бактерии. Наконец, если учесть, что до настоящего времени в некоторых руководствах по микробиологии, как и ранее [Bergi, 8-th Ed.], род Bifidobacterium
относят к семейству Actinomycetaceae, то окажется, что актиномицеты филогенетически близки традиционно известным представителям пристеночной микробиоты кишечника. Они повышают значимость микробиоты кишечника для организма хозяина, так как актиномицеты превосходят все прочие микроорганизмы по продукции антибиотиков и витаминов и обладают мощным ферментативным аппаратом. Высокая степень колонизации кишечника актиномицетами не выглядит необычным явлением, если иметь в виду, что они широко распространены в окружающей среде – почве, воде, воздухе, на внутренних стенах жилых и производственных помещений [Andersen, 1998]. Их обитание в организме человека при таких обстоятельствах выглядит естественным. Действительно, в руководствах по клинической микробиологии отмечается обнаружение актиномицетов и родственных организмов, таких как
Mycobacterium, Actinomadura, Propionibacterium,
Actinomyces, Corynebacterium, Bifidobacterium в кишечнике и других органах человека. Там они фигурируют (в том числе и бифидобактерии) как участники инфекционных и воспалительных процессов (Mannual on Clinical
Microbiology). Однако патогенность актиномицетов, чувствительность к антибиотикам, способы лечения связанных с ними заболеваний являются предметом
единичных специализированных лабораторий и клиник в мире. Трудности в их бактериальной диагностике и культивировании послужили препятствием широкой известности этих микроорганизмов в клинической практике. В том числе при многочисленных заболеваниях, связанных с изменением микробиоты кишечника и кожи
Существенный вывод для практики диагностики и мониторинга пристеночной микробиоты кишечника дало одновременное определение концентрации микробных маркеров в крови тех же пациентов. Оказалось, что их концентрация коррелирует с концентрацией микробов на кишечной стенке, измеренной в биоптатах. Это физиологически закономерно, так как при естественной гибели микробных клеток их липиды разбираются ферментной системой кишечника, при этом не использованные на его стенке жирные кислоты микроорганизмов поступают в кроветок.
Это явление дает возможность контролировать состояние микробиоты кишечника по данным анализа микробных жирных кислот в капле крови (40 мкл) из пальца.
Следует лишь учесть, что в кровь попадают также микробные молекулы от микроорганизмов, обитающих на других слизистых оболочках человека (ротоглотка, урогенитальный тракт), а также из очагов воспаления, вызванных индигенной (собственной) микрофлорой или возбудилем, поступившим извне. Наличие маркеров микроорганизмов такого происхождения в крови теоретически обусловлено механизмом иммунного ответа на появление возбудителя. Фагоцитирующие клетки организма человека адсорбируют и переваривают антигены микроорганизмов, в том числе и целые клетки, и выводят продукты лизиса в поток лимфатической и кровеносной систем. Кроме фагоцитоза, клетки микроорганизмов разрушаются под действием других механизмов, в том числе собственного апоптоза и лизиса ферментами белкового комплемента крови и других компонентов иммунной защиты. В любом случае разрушение происходит в конечном счете до мономерных составляющих биополимеров. Исходя из основ физиологии обмена биологических жидкостей человека [Физиология человека, М. Мир, 1996], обмен 70% жидкости плазмы с интерстиционным пространством происходит за 1 мин. Поэтому малые фрагменты микробных биополимеров, образующиеся в этом пространстве, поступают в кровь практически сразу. То есть наличие микробных маркеров в крови отражает состав микробных сообществ тела человека, независимо от места обитания микроорганизмов или очага воспаления.
Иначе говоря, измеряя концентрацию микробных маркеров в крови можно оценивать микроэкологический статус человека в целом.
Однако в норме, то есть при отсутствии симптомов воспаления или локального инфицирования, их преимущественным источником является микрофлора кишечника.

Оффлайн SergeySergey

  • Постоялец
  • ***
  • Сообщений: 134
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #21 : 20/09/2016, 02:32:56 »
Как и у всех у меня щас тоже имеется своя жива, кефир, закваска...
Брал немного клейм Терехов Анно но, тенделизированного овса. Помыл яблоко, кобачек, сверху полил кипятком, хорошо помыл руки, снял шкурка с яблок и кабачка, все это в блендер на 20000 оборотов. Ещё туда добавил чайную ложку Гиммолайской соли, таблетку аскорбинки, и столовую ложку лактулозы. Всего получилось 0.5 литра. Сбил в 3х литровую банку, остальное добавил охлажденой кипяченой воды.
Получилась кислятина, но как-то её организм просит. Иногда на стакан воды делаю пару столовых ложек этой живы(предварительно перемешав) и ложку мёда. Очень вкусно. И это один из очень не многих продуктов который как будто не я хочу, а организм просит.
Недельки через три вырасла плёнка. Чисто белого цвета. Миллиметра 2 толщиной и очень упругая. Поцепил ложкой и одним цельным куском вытащил и выкинул. Через несколько дней точно такая же плёнка. Долил воды до самого верху, убрал всё и закрыл крышкой. Но через неделю опять выросло.
Потом на форуме заговорили про морской рис и биопленку. Решил взглянуть в микроскоп. Там было 2 вида чего-то там. Процентов 95% это кругленькие красивые бактерии полупрозрачные, отдалённо напоминают эритроциты, только прозрачно-белые. Второй вид что-то вроде волосинок. Если первые условно взять за 1 мм, то эти были 20 мм. Плавали эти волосинки отдельно, т.е. не гриб и не плесень, каждый сам по себе, а не сеть.
Всё, ничего другого не было. Плёнку продолжаю выкидывать. Сейчас эту банку пока не трогуютрогаю. Купил Эвиталию. Каждый раз добавляют её. Закваску сейчас не делаю.
Болячек у меня никаких нет, волосы все на месте. Влияние еды оценивать сложно. Жду, что как после голодания наступит ясность и лёгкость. Тогда буду смотреть насколько быстро организм восстанавливается после спортзала.
Но пока такой еды не предвидится.

P.S. периодически вспоминаю слова Изюма, что у этой ТЖ есть название, которое он нам парнокопытным не скажет. Ещё в прошлый приход он говорил что есть название благороднейшее, красивейшее. Я тогда предположил что это Мацерация.
Какие ещё варианты, как красиво назвать еду или процесс?

Оффлайн sergeyy

  • Старожил
  • ****
  • Сообщений: 453
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #22 : 03/10/2016, 17:24:51 »
Было мне скучно, взял и отложил в отдельную посудину немного жижи живой и сыпанул пару чайных ложек сахара белого, на 100 грамм жижи примерно. Через день вонь как от ацитона у детей изо рта. Что можете сказать по этому поводу наши химики?
Хоть и химик, но в этой сфеле лучше я бы был микробиологом и биохимиком... Если идет выделение газа, то это может быть клостридия c. butylicum (микроорганизм, которій можно использовать для получения биобутанола но не ТЖ). Если вы не перемешивали и на поверхности появилась белая пленка (пузырьки газа не образуются), то это скорее всего те патогенные аэробные микроорганизмы, с которыми я часто сталкивался. Не знаю точно, что это за микроорганизмы но возможно это бактерии рода псевдомонас (они тоже могут давать фруктовые запахи), или стрептомицеты (появление этой пленки останавливает развитие молочнокислых и я предположил, что из-за появления природных антибиотиков) либо аскомицеты, либо еще что-то. Руки чешутся разобратся но пока не разобрался более глубоко.

Оффлайн Faradey

  • Старожил
  • ****
  • Сообщений: 381
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #23 : 24/11/2016, 01:32:18 »
Всем привет.
Вот делал эксперименты с горохом снова. И тут такая вот засада на третий день. Вода испарилась немного и горох показался из под воды. Образовалась пленка белая, с оттенком сереньким. Что это за гриб или что это вообще такое?

Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #24 : 30/12/2016, 20:53:40 »
Всё таки возвращаюсь к сумаляк ;)

Размешиваем(аэрация) мучную(размолотую) смесь при температуре 50-70С. Получаем коричневую(меланоидины) питательную смесь длительного  хранения.

Цитировать
10/02/2012 в 13:51
Мы начали производство сумлак на промышленной основе, сертифицированный.
Срок хранения 4 месяца. проработайте сбыт, отгрузим.
Узбекистан г. Навои т.+998797250888.

http://mytashkent.uz/2009/03/29/sumalyak/

Это не реклама

A я тут давече турбанул пшеничную крупу не на воде, а на кленовом соке- тоже приятно получилось. Фото не прилагаю чтобы не повторяться- ув.Андреас выложил то что и у меня получается -на вид- обычная круповая каша.

Одно из наблюдений- по замечанию ув Андреаса попробовал турбануть н 70 гр (ибо верхний слой каши на самом деле на несколько градусов ниже чем температура внизу кастрюли.
Как ни странно- разница есть- если турбокаша приготовленная на 65 гр держит свои вкусовые свойства до пяти дней (при комнатной температуре ( и лишь на пятый день начинает киснуть- становиться изюмовским турбокефиром), то каша приготовленная при 70 гр начинает киснуть уже к концу первого дня.
По ссылке женщины варят и если на масле то это может быть даже выше 100 градусов.

Р
Цитировать
азмешиваем(аэрация) мучную(размолотую) смесь при температуре 50-70С. Получаем коричневую(меланоидины) питательную смесь длительного  хранения.
А это уже другая технология. Спрашиваю потому что очень хотелось бы попробовать.

Уже давал ссылку на то что температуру можно варьировать

Цитировать
СУМАЛЯК ПО-ТАШКЕНТСКИ

31 июля 2008
Оригинальный способ получения сумаляка разработан сотрудниками Ташкентского государственного педагогического университета имени Низами.
Способ включает получение путем трехкратной экстракции ферментативного зернового сырья осахаривающего сусла, приготовление затора на основе внесения пассированной пшеничной муки, ферментативное осахаривание затора и варку. В качестве ферментативного зернового сырья используют порошок пшеничного солода. Экстракцию сырья осуществляют при температуре 35 - 40 градусов. Соотношение ферметативного сырья и пшеничной муки составляет один к шести. Варят 10 - 13 часов.
Новая технология позволила повысить питательную и биологическую ценность сумаляка. На оригинальный способ получен патент на изобретение.

http://pv.uz/nauka/sumalyak-po-tas

Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #25 : 30/12/2016, 21:37:01 »
Выдержка солода, толокна при "сушке" при температурах от 37С до 70С это ферментация с доступом воздуха - лучистыми грибками или по современному астинобактериями/актиномицетами. Образуется разные полезности от витаминов группы В до антибиотиков. Потом из солода/толокна делаем кулагу(с дальнейшим квашением и аутолизом), солодуху, просто кашу.

Свежий солод и муку в сумаляк для аэробной ферментации приходится помешивать, хотя кулагу на первом этапе тоже размешивают.

Возможно если бы ramunas помешивал свою кашу при тех же 65С в ней было бы больше полезностей, а так было только то что образовывалось на поверхности.

Я тоже видел в своих более продолжительных опытах при 65С плёнку на поверхности, но как то не сделал тогда вывода что можно определенно проверить аэрацию при таких температурах, хотя для пропионовых при 40С-50С проверял.

Савелий предлагал аэробную ферментацию, но при температуре 45С, с последующим анаэробной т.е. приготовление рисового кефира.

Так что нагрев полисахаридосодержащих продуктов не выше 70С в разных ситуациях аэрации(помешивания) и последующая анаэробная(кислая) ферментация(без размешивания) это видимо и есть путь создание разновидностей ТЖ. Хотя можно и без закисления, только после аэробной ферментации.
« Последнее редактирование: 30/12/2016, 21:57:41 by rid »

Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #26 : 10/01/2017, 00:44:54 »
Актиномицеты (рода Streptomyces, Streptosporangium, Micromonospora, Actinomadura) являются постоянными обитателями кишечника дождевых червей, термитов и многих других беспозвоночных. Разрушая целлюлозу и другие биополимеры, они являются их симбионтами. Представители рода Frankia способны к азотфиксации и образованию клубеньков у небобовых растений (облепиха, ольха и др.). Есть патогенные формы, вызывающие актиномикоз. В организме человека обитают в ротовой полости, в кишечнике, в дыхательных путях, на коже, в зубном налете, в кариозных зубах, на миндалинах.

В отличие от общеизвестных адсорбентов (активированный уголь или определенные силикаты и минералы глины), которые лежат на слизистой компактными конгломератами, гуминовые кислоты свободно проскальзывают между ворсинками эпителия кишечника и проникают между клетками эпителия, где защищают эти чувствительные ткани от повреждения вирусами и вероятности некротизации. При этом между возбудителями инфекции, их токсинами и эпителием слизистой образуется плёнка из тончайших частиц гуминовой кислоты, защищающая воспалённую ткань эпителия и комплекс лимфатических желез. Если ворсинки кишечника уже разрушены, гуминовые кислоты проникают в субэпителиальную ткань, и способствуют их восстановлению.

Большинство актиномицетов — аэробы, факультативные анаэробы присутствуют лишь среди актиномицетов с непродолжительной мицелиальной стадией. Здесь усматривается некоторая параллель с грибами, среди которых лишь немицелиальные дрожжи также способны жить в анаэробных условиях. Предполагается что менее эффективный анаэробный тип метаболизма успешен при большей относительной поверхности клеток, которая достигается фрагментацией мицелия.
Считается что актиномицеты устойчивее к высушиванию чем немицелиальные бактерии, благодаря чему они доминируют в пустынных почвах. Лабораторное хранение почвенных образцов в условиях, не способствующих вегетативному росту прокариот увеличивает относительное содержание актиномицетов, учитываемое методом посева. Особенно долго способны сохраняться при высушивании склероции, образуемые родом Chainia. Показано что при aw=0,50 некоторые споры прорастают (Streptomyces, Micromonospora), однако образовавшийся мицелий не ветвится. При aw=0,86 прорастают споры практически всех актиномицетов, у некоторых мицелий ветвится, образуются микроколонии, оптимум достигается при aw=0,95.
Чаще всего актиномицеты нейтрофилы, однако некоторые роды ацидофильны или алкалофильны. Характерным свойством актиномицетов является ацидотолерантность, благодаря чему их доля в микробном комплексе лесных почв относительно высока. Отмечено что на кислой среде продлевается вегетативная стадия, на щелочной, напротив, ускоряется спорообразование.

Для выделения термофильных актиномицетов разными авторами использовались разные методики. Выделение этих микроорганизмов хорошо удается на крахмальном агаре, крахмально-аммиачно-сульфатном агаре, а также мясо-пептонном агаре (МПА). Лучшим для этой цели оказался крахмально-аммиачно-сульфатный агар, на котором наблюдается слабый рост более требовательных к среде термофильных бактерий и, наоборот, хороший рост термофильных актиномицетов. Наиболее подходящая температура для выделения 55—60 °С.
        Культивируют термофильные актиномицеты на самых различных средах.
        Для получения хорошего роста и споруляции этих микроорганизмов обычно используют крахмал и неочищенную мальтозу. К. Е. Эриксон отмечает, что Micromonospora vulgaris хорошо растет при использовании следующих источников азота: пептона, триптона, гидролизата, казеина. Многие термофильные актиномицеты нуждаются в дополнительных компонентах среды, представляющих собой смеси аминокислот, витаминов, пуринов и пиримидинов
  Термофильные актиномицеты обладают большой скоростью роста. Их жизненный цикл проходит гораздо быстрее, чем у мезофильных штаммов. Термофильные актиномицеты образуют разветвленный мицелий из гиф, диаметр которых от 0,2 до 1 мкм. На твердых средах они растут в виде плоских колоний, достигающих 3—4 см в диаметре, а иногда и до 6—8 см (рис. 191), часто покрытых налетом, состоящим из воздушных гиф со спорами. Термофильные актиномицеты образуют воздушный и субстратный мицелии. Гифы воздушного мицелия без спор термофильных лучистых грибков, как правило, белоснежно-белого цвета. Воздушный мицелий со спорами или сохраняет белый цвет, или приобретает темно-серый оттенок. Серо-зеленые, голубые и желтые штаммы встречаются реже.
        У некоторых термофильных актиномицетов в процессе развития изменяется цвет колоний на агаре от белоснежно-белого до желтого, грязно-зеленоватого, коричневого, красноватого и даже черного. Многие представители термофильных лучистых грибков образуют растворимый пигмент, который проникает в среду и окрашивает ее в яркие цвета.
  Изучение тонкого строения спор ряда актиномицетов позволило исследователям сделать вывод, что некоторые термофильные актиномицеты образуют споры, близкие по строению к спорам бактерий родов Bacillus и Clostridium.
        Обмен веществ у термофильных микроорганизмов происходит более интенсивно, чем у мезофильных. Об этом свидетельствуют экспериментальные данные о более высокой ферментативной активности термофилов и о повышенном количественном содержании в клетках термофильных микроорганизмов некоторых ферментов.

Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #27 : 10/01/2017, 01:00:45 »
...
Я делаю  закваску из   овсяных хлопьев, но   после того, как я сварю ,остужу и внесу эвиталию, после этого я ставлю в мультиварку на 40 град.на 36 часов.Так я делаю закваску.И если   раньше она покрывалась пленочкой плесени, но когда я стала ее взбалтывать несколько раз в день, она не стала покрываться плесенью.Закваска конечно получается кислая. А йогурт получается по консистенции йогурта. Сфотографировала иогурт и отослала себе на почту, а как отправить на форум, к сожалению не могу.

Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #28 : 10/01/2017, 01:17:30 »

Один определитель тут не поможет. Хорошо еще что бифидумы не просто круглые.
Вот на днях я смотрел белесую пленочку, которая обычно заводится при квашении. Пленочка появилась на борще. Я его переквасил, хотел еще больше кислоты.
Делаю вывод что это не плесень, по форме вроде как откормленные бифидумы. Заквашивал же кефирчиком на молоке.


Оффлайн rid

  • Администратор
  • Ветеран
  • *****
  • Сообщений: 1366
    • E-mail
Re: АКТИНОМИЦЕТЫ(лучистые грибки)
« Ответ #29 : 10/01/2017, 02:16:15 »
Цитировать
Вместо оливок любой другой продукт и обязательное условие ....продукт должен быть целым,не резать.

Топинамбур,огурец,помидор,лист капустный ,укроп,петрушка,кабачок,свекла,морковь и.т.д.

Например молодые кабачки можно огурец он так же недозрелый,мою,складываю в банку,нагреваю воду до 70 градусов ,заливаю водой кабачки,ставлю в термошкаф на сутки 43градуса.
   Кабачки из безвкусных становятся сладковатыми,
Второй этап.
Сливаю жидкость в кастрюлю и нагреваю до 63-70 градусов и заливаю опять кабачки, промытые проточной водой прямо в банке ,
Ставлю банку при комнатной температуре пока не появится белая пленка ,все время накрыто марлей что бы с воздуха лишней жизни не развелось.
Закрываю пластмассовой крышкой и в погреб.
Все.
 
Ответы на вопросы......

В Термошкафе нагревательный элемент лампочка 70 ват плюс терморегулятор.греется среда и нет инерции как у других нагревательных элементов типа плитки.У меня до 15 литров за раз греется.Описывал подробно здесь  http://golodanie.su/forum/showpost.php?p=908807&postcount=26

Термофилы ...йогуртовые...не кислые у них примерно кислота естественная типа как у малины например....и второе совпадение 43 градуса  продукт не денатурирует.
 Для приобретения навыков для начала можно использовать йогуртовую закваску после первой заливки чуток остынет добавить йогуртовых бакт.

Первая заливка водой 70 отсекание 95 проц.любителей низких температур.
Второй нагрев оставляет энзимы и повторно отсекает не нужную мик.флору.
Белая пленка это аэробы типа сенной палочки типа антибиотик.Не  прорвутся патагены.

А дальше при желании можно пробовать играть природными фитоцидами ,противобактериальными растителыми добавками типа укропа,листьев смородины,хрена,перца,чеснока,лука,....и.т.д.
для отсекания нежелательной микрофлоры.
   Добавлять перед первой заливкой.
 
Соль нет...получится хрень... можно потом перед употреблением солить кому как позволяет вера.

Информацию можно использовать кто как хочет не ссылаясь на меня..

http://golodanie.su/forum/showthread.php?p=913489#post913489

Мендель это Савелий. А белая пленка это колонии стрептомицетов, которые и продуцируют антибиотики и да как отмечают ученые похожи сенную палочку и также производят споры.

Tags:
 

DISCLAMER